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PREFACE

An in situ seismic investigation at Folsom Dam was authorized by the
US Army Engineer District, Sacramento (SPK), Under Intra-Army Order for
Reimbursable Services Nos. SPKED-F-82-16 dated 18 Dec 1981, SPKED-F-83-16
dated 8 Oct 1982, SPKED-F-83-16 change No. 1 dated 11 May 1983, and
CESPK-ED-D-88-56 dated 24 Aug 1988.

The field investigation was performed during the periods 24 May through ’
4 June 1982 and 12 April through 4 May 1983. Messrs. Jose” L. Llopis, Donald
E. Yule, Thomas B. Kean, Michael K. Sharp, Donald H. Douglas, Keller Golden,
Ms. Mary Tinker, and LT Stephen G. Sanders of the Earthquake Engineering and
Geophysics Division (EEGD), Geotechnical Laboratory (GL); and James L. Pickens
of the Instrumentation Services Division (ISD), of the US Army Engineer
Waterways Experiment Station (WES), were members of the field parties who
carried out this project. Technical support was provided by Dr. Paul F.
Hadala, Assistant Chief, GL, Dr. Mary Ellen Hynes, Messrs. Joseph R. Curro,
Jr., David W. Sykora, and Ronald E. Wahl (EEGD). The analysis phase of this
study was performed by Mr. Llopis under the general Supervision of Dr. Arley
G. Franklin, Chief, EEGD, and Dr. William F. Marcuson III, Chief, GL. This
report was edited by Ms. Joyce H. Walker of the Information Technology
Laboratory.

The series of eight reports which document the seismic stability
evaluations of the man-made water retaining structures of the Felsom Dam and

Reservoir Project, located on the American River in California, are as

follows:
Report 1: Summary
Report 2: Interface Zone
Report 3: Concrete Gravity Dam
Report 4: Mormon Island Auxiliary Dam - Phase 1
Report 5: Dike 5
Report 6: Right and Left Wing Dams
Report 7: Upstream Retaining Wall
Report 8: Mormon Island Auxiliary Dam - Phase II ession For
Data reported herein were used in Reports 1, 4, 5, 6, and 8. . TFZA&I Eg
Commander and Director of WES during the preparation of this nunced O
sleatlonm ]

report is COL Larry B. Fulton, EN. Dr. Robert W. Whalin is Technical

PDirector. !
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CONVERSION FACTORS, NON SI-TO SI (METRIC)

UNITS OF MEASUREMENT

Non-SI units of measurement used in this report can be converted to SI

(metric) units as follows:

Multiply By
feet 0.3048
inches 2.54
miles (US statute) 1.609
pounds (force) 4.,4482
pounds (mass) 0.4536

L2 SRSy pon

To Obtain

metres
centimetres
kilometres
newtons

kilograms
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IN SITU SEISMIC INVESTIGATION OF FOLSOM DAM AND RESERVOIR PROJECT

PART I: INTRODUCTION

Background, Purpose, and Scope of Study

1. Current computerized seismic wave propagation analysis procedures
for earth dams and foundations require that values of compression- and
shear-wave (P- and S-wave) propagation velocities be determined as a function
of depth. These seismic velocities are used in conjunction with conventional
field sampling and laboratory testing to provide soil property information for
a dynamic analysis of the dam and its foundation.

2. A geophysical investigation was conducted at Folsom Dam, which is
located on the American River approximately 23 miles” northeast of Sacramento,
California, as shown in Figure 1. More specifically the investigation was
conducted at Dike 5, the Right and Left Wing Dams which flank the Concrete
Gravity Dam, and at Mormon Island Auxiliary Dam all of which are shown in
Figure 2. The investigation was performed to determine P- and S-wave
velocities as a function of depth within the dam and underlying foundation
materials. A suite of seismic test methods was used to determine true P- and

S-wave velocity zonations of the embankments and their foundations for use in

a dynamic analysis.

Site Geology

3. At the time of construction, the geology at the site was carefully
detailed in the Foundation Reports by US Army Engineer District, Sacramento
(1953a,b,c, and d, 1954, and 1955). These foundation reports and a later
paper by Kiersch and Treasher (1955) are the sources for the summary of site

geology provided in this section.

* A table of factors for converting non-SI to SI (metric) units of

measurement is presented on page 4.




4. The Folsom Dam and Reservoir Project is located in the low,
western-most foothills of the Sierra Nevada in central California, at the
confluence of th Jorth and South Forks of the American River. Topographic
relief ranges from a maximum of 1,242 ft near Flagstaff Hill, located between
the upper arms of the reservoir, to 150 ft near the town of Folsom just
downstream of the Concrete Gravity Dam. The North and South Forks once
entered the confluence in mature valleys up to 3 miles wide, but further
downcutting of the river resulted in a V-shaped inner valley 20 to 185 ft
deep. Below the confluence, the inner canyon was flanked by a gently sloping
mature valley approximately 1.5 miles wide bounded on the west and southeast
by a series of low hills. The upper arms of the reservoir, the North and
South Forks, are bounded on the north and east by low foothills.

5. A late Pliocene-Pleistocene course of the American River flowed
through the Blue Ravine and joined the present American River channel
downstream of the town of Folsom. The Blue Ravine was filled with late
Pliocene-Pleistocene gravels, but with subsequent downcutting and headward
erosion, the Blue Ravine was eventually isolated and drainage was diverted to
the present American River Channel.

6. The important formations at the damsite are: a quartz diorite
granite which forms the foundation at the Concrete Gravity Dam, Wing Dams, and
Saddle Dikes 1 through 7; metamorphic rocks of the Amador Group which form the
foundation at Mormon Island Auxiliary Dam and Saddle Dike 8; the Mehrten
Formation, a deposit of cobbles and gravels in a somewhat cemented clay matrix
which caps the low hills that separate the saddle dikes and is part of the
foundation at Dike 5; and the alluvium that fills the Blue Ravine at Mormon
Island Auxiliary Dam.

7. Weathered granitic or metamorphic rock is present throughout the
area. Figure 2 shows a geologic map of the project area. The Concrete
Gravity Dam, the Wing Dams, the retaining walls, and Dikes 1 through 7 are
founded on weathered quartz diorite granite. Between Dikes 7 and 8 there is a
change in bedrock type. Dike 8 and Mormon Island Auxiliary Dam are underlain
by metamorphic rocks of the Amador Group. The Amador Group consists
predominately of schists with numerous dioritic and diabasic dikes.
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Test Program

8. After a preliminary seismic test program had been planned by
personnel of the US Army Engineer District, Sacramento, (SPK) it was submitted
to the US Army Engineer Waterways Experiment Station (WES) for review.
Pertinent information relative to the design and construction of the
embankment was provided to aid in that review. The finalized test program
consisted of seismic refraction, crosshole, downhole, and surface vibratory
tests which would provide the geophysical data necessary to complete an
analysis of Dike 5 and the dams' response to earthquake loadings. The
locations of the various tests conducted for each of the embankments
investigated are presented in Part II of this report.

9. The pool elevations while conducting the surface vibratory and
preliminary seismic refraction tests ranged between 462 and 465 ft with an
average pool elevation of 464 ft (24 May - 4 June 1982). During the
performance of the crosshole, downhole, and seismic refraction surveys, the
pool elevation ranged between 433 and 445 ft with an average pool elevation of
437 ft (12 April - 4 May 1983).

10. The velocity profiles pres:nted in Hynes (1989), Hynes et al.
(1982), Wahl and Hynes (1988), Wahl et al. (1989), and Wahl et al. (1988)*,
were based on preliminary results from crosshole seismic tests reported by
Llopis (1983) and Kean (1988). The P-wave velocity profiles presented in this
report are based on results from seismic refraction, crosshole, and downhole
tests; whereas, the S-wave velocity profiles are based on results from surface
vibratory, crosshole, and downhole testing.

11. The P-wave velocity profiles used in Reports 1,4,5,6, and 8 are
used primarily to distinguish between materials that have very low or very
high levels of saturation and to delineate top of rock and geologic contacts
for input to the computer program SHAKE (Schnabel, Lysmer, and Seed 1972).

The S-wave velocities reported in Reports 1,4,5,6,and 8 are used in developing

idealized soil profiles and determining soil moduli for input to SHAKE. Both

For the remainder of this report Hynes (1989), Hynes et al. (1988), Wahl
and Hynes (1988), Wahl et al. (1989), and Wahl et al. (1988) will be
referred to as Reports 1,4,5,6, and 8, respectively.
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the P- and S-wave velocity profiles reported in Reports 1,4,5,6, and 8 and in

this report agreed very well. Minor differences between the profiles exist
but they are not significant enough to affect the results of the stability

analysis of Dike 5, the Wing Dams, or Mormon Island Auxiliary Dam.*

Geophysical Test Principles and Field Procedures

12. The geophysical survey procedures, including a brief description of

each survey as it pertains to this investigation, are given below. These

tests were run in order to obtain velocities of the materials, present at the

site, as a function of depth. Further information regarding geophysical

testing and interpretation procedures used in this study can be obtained in

Engineer Manual EM 1110-1-1802 (Depar.ment of the Army 1979).

13. Surface seismic refraction tests. The seismic refraction method

utilizes the fact that the velocity of seismic wave propagation in a material

is dependent on its elars:ic properties. It is assumed that materials are

locally homogeneous and isotropic. With this method of investigation, depth

and location of bodies or layers having contrasting elastic properties and

their corresponding seismic velocities are determined. 1In the seismic

refraction method, seismic energy is imparted into the ground usually by means

of explosives or by striking a metal plate, placed on the ground surface, with

a sledgehammer. The location of the disturbance is considered a point source

and the disturbance is transmitted through the ground as a series of waves.
Geophones (velocity transducers), which are used to detect the seismic wave,

are implanted into the ground surface and laid along a straight line spaced at

regular intervals. The length of the line depends on the required depth of

investigation; a common rule of thumb is the length of the line should be from

three to four times the depth of interest. Interpretation of the seismic

refraction data makes use of plots of the P-wave arrival times versus the

geophone distances from the seismic source.

Personal Communication, May 1989, Dr. Mary Ellen Hynes, Research Civil
Engineer, and Mr. Ronald E. Wahl, Civil Engineer, US Army Engineer
Waterways Experiment Station, Vicksburg, MS.




14. Crosshole tests, Crosshole tests were used to determine horizontal
P- and S-wave velocities as a function of depth. One advantage of crosshole
testing as opposed to surface seismic refraction is its ability to detect
lower velocity layers underlying or sandwiched between layers of higher
velocity. The crosshole technique is therfore considered to be inherently
more definitive and accurate than the surface refraction test but has the
shortcoming of requiring boreholes and not being able to cover as much areal
extent; thus the techniques are used in a complementary manner. Basically,
testing consists of measuring the arrival time of a P- or S-wave that has
traveled from a source in one borehole to a detector in another for different
test elevations. Knowing the distance between borings and the time the P- or
S-waves take to travel across this distance the velocity can be computed
(distance divided by time).

15. Crosshole testing on the centerline and at the downstream shoulders
of the embankments and also on the downstream slope of Dike 5 was performed in
boreholes cased with 4-in. ID polyvinyl chloride (PVC) pipe. The annular
space between the casing and walls of the borings was grouted with a mixture
of portland cement, bentonite, and water, which, after setting up, had a
consistency similar to that of soil.

16. Crosshole testing in the shells of the embankments and in the
dredged tailings, downstream toe of Mormon Island Auxiliary Dam, was performed
in 5-in. ID steel-cased borings. The gravelly nature of the shells and
dredged tailings made it necessary to use Odex equipment to drill the holes.
The Odex system of drilling consists of a downhole pneumatic hammer with an
expanding bit that pulls a steel casing behind the bit. When the casing is in
place, the bit can be retracted and withdrawn through the casing. The Odex
system was selected for the installation of the cased holes because this
system does not require grouting the casing in the gravelly material as would
be the case if common drilling and PVC casing were employed. It was believed
that if grout had been used, the grout might have flowed through the gravel
material, cementing it together, and when tested would have given erroneous
results. The disturbance to the gravels when drilling these holes with the
Odex system is thought to be relatively minor and allows several holes to be
installed in a single day. Unfortunately, the Odex system does not provide a

means of satisfactorily sampling the subsurface.
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17. Borehole deviation (drift) surveys were conducted to determine the
precise vertical alignment of each boring. Accurate reduction of data from
the crosshole tests requires knowledge of the drift of each boring so that a
straight-line distance between borings at each test depth can be established.
An analysis of the crosshole data obtained at each test elevation was made
with the aid of a computer program developed at WES (Butler, Skoglund, and
Landers 1978).

18. Velocities were obtained by placing a detector in a receiver
borehole and a source of seismic energy at the same elevation in another
borehole (source hole). The detector consisted of a triaxial array of
geophones (two mounted horizontally at 90 deg to each other, and one
vertically oriented) housed in one container. The container housing the
geophones was clamped firmly to the casing wall by means of an air-inflatable
rubber bladder. An explosive charge (exploding bridgewire (EBW) detonator) was
used for the crosshole P-wave tests. For the crosshole S-wave tests a
downhole vibrator was used as a source of S-waves. The S-wave testing
procedure consisted of lowering the vibrator in the borehole to a selected
test elevation and clamping the vibrator firmly to the sidewalls of the PVC
casing by means of an inflatable rubber bladder. When the vibrator was in
position, the operator swept the oscillator through a range of frequencies
(50 to 500 Hz) and selected one that propagated well (one with a high
amplitude) through the transmitting medium. The time required for the P- and
S-waves to travel from source to receiver were recorded with a portable,
battery-powered, 12-channel seismograph with data-enhancement canability.

Crosshole testing at each crosshole set was performed at 5-ft depth intervals.

19. Downhole tests, Downhole surveys are conducted by placing an
energy source on the surface close to the mouth of a borehole, and a triaxial
array of geophones placed in the borehole. In this type of survey the travel
path of the seismic signal is forced to traverse all of the strata between the
source and detector. Unlike the crosshole test the downhole test requires
only a single boring. These surveys are useful for detecting and measuring
wave velocities in blind zones or underlying zones of low velocity, which are

normally not detectable in a surface refraction survey.

10
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20. Downhole surveys are conducted by creating a seismic disturbance
near the mouth of the borehole and measuring the time of arrival of this
disturbance at various depths in the boring. In the case of downhole P-wave
test the seismic disturbance was created by striking a steel plate, placed
approximately 5 ft from the mouth of the borehole, with a sledgehammer. 1In
the case of downhole S-wave tests the S-wave energy source was a sledgehammer
impacting a large wooden plank located near the mouth of the borehole. §-wave
signals of opposite polarity were generated by striking opposite ends of the
plank. With reversal of polarity of the source, the polarity of the S-wave is
reversed; whereas, the polarity of the P-wave is not. This allows the
interpreter to pick the S-wave arrival by comparing signal wave forms measured
in successive tests with reverse polarity. A triaxial geophone array
(detector) placed in the borehole was used to measure the amount of time the
disturbance took to travel from source to detector. This procedure was

repeated at 5-ft depth increments.

21. Surface vibratory tests. These tests were conducted to determine

Rayleigh-wave (R-wave) velocities of the embankments and foundation materials
as a function of depth. The R-wave velocity is slightly lower than the S-wave
velocity. For homogenecus media and for Poisson’'s ratios commonly found in
soil materials, the difference in velocities is less than 9 percent

(Ballard 1964)., Therefore, for practical purposes, S-wave velocities and
shear moduli can be determined approximately by surface vibratory tests, which
generate strong R-wave trains.

22. The R-waves in this investigation were generated by a 4,000-1b
force (peak) electrohydraulic vibrator with a 10- to 300-Hz frequency range.
The test procedure consisted of positioning the vibrator at a selected
location and placing velocity transducers (geophones) in a straight line
(starting at and extending away from the vibrator) at selected intervals along
the ground surface. The vibrator was then operated at discrete selected
frequencies with the R-wave being monitored by the geophones (geophone nearest
the vibrator served as zero time). The time lag for each geophone, referenced
to the zero-time geophone, was determined and was plotted versus the
respective distances that the geophones were from the the reference geophone

(zero-time geophone). The R-wave velocity for each source frequency was

11
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determined from the slope of the best-fit line obtained in the plot. With the
frequency and R-wave velocity known, a corresponding wavelength was computed
by dividing the velocity by the frequency. Wave velocities thus derived are
assumed to be average values for an effective depth of one-half the
wavelength. R-wave velocities that are determined near a high velocity
contrast interface, such as a soil-rock boundary, will probably be influenced
by both the higher and lower velocity materials and thus provide weighted

average velocities dependent on the physical properties of the two layers.

12
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PART II: TEST RESULTS

DIKE 35

Description

23. Dike 5 is the largest of the eight saddle dikes at the Folsom
Project having a crest length of 1,920 ft and a maximum height of 110 ft. The
embankment is located in a relatively steep walled topographic saddle. Two
basic types of foundation conditions are present beneath the embankment. The
portion of the embankment whose foundation is above elevation 450 ft is
founded on the Mehrten Formation, which is composed of cobbles and gravels in
a cemented clayey matrix. The remainder of the embankment is founded on a
weathered quartz diorite granite.

24, The embankment is essentially homogenous and is constructed of
compacted decomposed granite scraped from the weathered granite in borrow
areas located in what is now the reservoir. The compacted decomposed granite,
a saprolite, classifies as a silty sand according to the Unified Soil
Classification (USCS). The construction specifications required that the
central portion of the embankment, Zone C, receive a higher compactive effort
than Zone D located in areas directly under the upstream and downstream
slopes. Seepage is controlled by a downstream drainage blanket. The upstream
side of the embankment has slopes of 3.25H:1.0V at below elevation 466 ft and
2.25H:1.0V between elevation 466 and 480.5 ft (crest elevation). The
downstream side has one continuous slope of 2.25H:1.0V. A cross-section of

Dike 5 is shown in Figure 3.

Test Results
25. Figure 4 shows the location and layout of the geophysical tests

conducted at Dike 5. The geophysical program at Dike 5 consisted of seismic

refraction, crosshole, downhole, and surface vibratory testing.

13
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Surface seismic refraction tests

26. One refraction line designated R-1 was run along the downstream toe

of Dike 5 between approximate Station 178+50 and 182+50, as shown in Figure 4.
Line R-1 was 320 ft in length and consisted of 12 geophones spaced 25 ft
apart. Shot points were offset 25 and 20 ft from the end of the line. The
time-distance (TD) plot for refraction line R-1 is presented in Figure 5. The
results indicate that two layers can be determined. The first or uppermost
layer has a P-wave velocity of 2,110 fps and extends to an average depth of

10 ft where the second layer with true velocity of 9,930 fps is encountered.
The first velocity layer corresponds to overburden or very intensely weathered
granite, whereas, the second layer velocity is indicative of weathered .

granite.

Surface vibratory tests
27. Four 200-ft long vibratory lines, designated V-5 through V-8, were

run along the crest of Dike 5, as shown in Figure 4. Lines V-5 and V-6 were
run with the vibrator positioned at the highest section of the dam,

Station 180+50. The measured R-wave velocities for vibratory lines V-5 and
V-6 are presented in Figure 6. Vibratory lines V-5 and V-6 indicate similar
velocity profiles. The R-wave velocities range between approximately 800 fps
near the surface to approximately 925 fps at a depth of about 60 ft, the
maximum depth of R-wave penetration. The velocities over the depth range of

0 to 60 ft were influenced entirely by the core material, compacted decomposed
granite.

28. Surface vibratory lines V-7 and V-8 were run with the vibrator
positioned approximately at Station 191400. These lines were conducted on the
portion of the dike that is founded on the Mehrten Formation. The average
embankment height in this area is roughly 15 ft. The R-wave velocities
obtained from lines V-7 and V-8 are displayed in Figure 7. The R-wave
velocities increase from about 800 fps at an approximate depth of 10 ft to
about 1,050 fps at a depth of 20 ft and remain essentially constant between
approximate depths of 20 and 60 ft, the maximum R-wave penetration depth. The
velocities measured by R-wave lines V-7 and V-8 are influenced by the
relatively shallow Mehrten Formation. The results indicate that the Mehrten

Formation has a higher R-wave velocity than the overlying embankment,
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Crosshole tests

29. Crosshole P- and S-wave tests at Dike 5 were cenducted in two pairs
of boreholes near Station 180+50, as indicated in Figure 4. The boreholes
designated as SS-1 and US-1 which were located on the centerline of the dike
were 115 ft in depth and spaced 10 ft apart; whereas, the boreholes SS-10 and
US-10 located on the downstream slope of the dike were 55 ft in depth and
spaced 10 ft apart. Both borehole sets were cased with 4-in. ID PVC pipe and
extended through the embankment and into the underlying weathered granite
foundation.

30. P-wave tests The calculated true P-wave velocities, as determined

by the CROSSHOLE computer program, for each test elevation for the two
crosshole sets, $S-US-1 and SS-US-10, are presented respectively in Figure 8
and 9. As previously mentioned, testing was conducted at 5-ft depth
intervals. Figure 10 shows the P-wave velocity zones interpreted from both
crosshole sets superimposed on the section of Dike 5 at Station 180+50. The
interpretation indicates that the velocity of the compacted decomposed granite
in the embankment ranges in velocity from 1,650 fps to 4,550 fps. Zones with
velocities approaching 4,800 fps are nearly saturated. The results indicate
that probably at the time of testing only the portions of the embankment just
above the foundation upstream of the centerline had high degrees of
saturation. The P-wave velocity of the weathered granite foundation was
measured to be 9,250 and 10,175 fps.

31. S-wave tests. The calculated true S-wave velocities, as determined
by the CROSSHOLE computer program, for crosshole sets SS-US-1 and SS-US-10,
are respectively presented in Figures 11 and 12. The S-wave velocity zones
interpreted from the crosshole sets are shown in Figure 13. In the compacted
decomposed granite of the embankment the shear wave velocities generally
increase with depth. The velocities measured range from 950 fps to 1,575 fps.
The S-wave velocities measured in the weathered granite foundation were

2,225 fps beneath the centerline and 2,875 fps under the slope.
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Downhole tests

32. Downhole P- and S-wave tests were conducted in borings SS5-1 (crest)
and SS-10 (downstream slope) at 5-ft depth increments as shown in Figure 4.
The downhole test results are presented in conventional time versus slant
distance (slant distance is nearly equal to depth) plots.

33. P-wave tests, Figures 14 and 15 present the data collected from
the downhole P-wave test conducted in boring sets located on the crest and
downstream slope of the dike. The P-wave velocity zones obtained from
downhole testing are shown in Figure 16. Four velocity zones which ranged in
velocity between 1,500 and 9,300 fps were indicated in the core material and
foundation materials. Three velocity zones ranging between 1,525 and
5,500 fps were interpreted for the shell and foundation materials.

34, S-wave tests Figures 17 and 18 respectively present the data

acquired from the downhole S-wave test conducted in borings located on the
crest and downstream slope of the dike. The velocity zones obtained from
downhole S-wave tests are shown in Figure 19. Velocity zones of 1,000 and
1,450 fps were indicated in the core while three velocity zones with values
ranging between 780 and 2,500 fps were indicated for the shell and foundation

materials.

Data Consolidation

35. 1In order to facilitate interpretation of the data acquired at
approximate Station 180450 using the various geophysical techniques, it is
convenient to present the data in composite form so that a zonal
interpretation can be developed using all the available data. Such composites
were prepared for P- and S-wave tests and are presented in Figures 20 and 21,
respectively.

36. As shown in the P-wave composite (Figure 20), three zones of the
dike were tested: the central impervious core, the downstream shell, and the
foundation ber- :th and at the toe of the dike. Results from downhole and
crosshole tests are presented for the core, shell, and foundation beneath the
dike and at the downstream toe. Comparison of the results from each test for
a specific zone are generally in good agreement on velocities and depths to

interfaces with the exception of the downhole test conducted on the downstream
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slope. For this particular test the velocity of the foundation materials is
indicated as 5,500 fps which is in disagreement with values obtained for
similar material as determined by other testing.

37. As depicted in the S-wave composite (Figure 21) tests were
conducted in the core, shell, and foundation of the dike. Results from
crosshole and downhole tests are presented for the core, shell, and foundation
materials beneath the dike. Also shown are results from surface vibratory
tests for the core materials. Velocities and depths to interfaces differ

somewhat because of differences inherent with these test techniques.

RIGHT WING DAM

Description

38. The Right Wing Dam is a zoned embankment dam which flanks the
northwest portion of the Concrete Gravity Dam. The Right Wing Dam is founded
on weathered quartz diorite granite. A plan view of the Right Wing Dam is
shown in Figure 22. The Right Wing Dam has a crest length of approximately
6,700 ft and a maximum height of approximately 195 ft. The core (Zone C)
consists of well-compacted decomposed granite and suitable fine-grained
materials from the American River channel. From Station 219+50 to
Station 238+60, the zoned embankment is constructed on top of an existing
homogeneous test embankment. Gravels (Zone B material) excavated from the
American River channel were used as upstream and downstream transition zones.
An uncompacted rock-fill shell (Zone A material) was constructed on the
upstream and downstream slopes over most of the length of the dam. The
upstream slopes are 2.25H:1.0V, and the downstream slopes are 2.0H:1.0V.

Typical sections are shown in Figures 23 and 24.
Test Results
39. Figure 22 shows the location and layout of the geophysical tests
conducted at the Right Wing Dam. The geophysical program consisted of seismic

refraction, crosshole, downhole, and surface vibratory testing.

17




Prem
J

Surface seismic refraction tests

40. Three P-wave refraction lines were run along the downstream toe of
the Right Wing Dam, as shown in Figure 22. Each of the three refraction lines
were 325 ft in length with twelve geophones spaced 25 ft apart and 25 ft
shotpoint offsets. Seismic refraction line R-4 was run along a service road
on the downstream toe of the Right Wing Dam between approximate Stations
235+90 and 239+15. The TD plot for line R-4 is presented in Figure 25. The
southern shotpoint (Station 239+15) was located above the filled-in North Fork
Ditch which ran beneath and perpendicular to the dam. One of the
short-comings of the seismic refraction method is that it assumes subsurface
layers to be locally homogeneous and horizontally continuous. With the ditch
being under one of the shotpoints this assumption is violated and, as a
consequence, depths to layers beneath the shotpoint cannot be computed.
Unfortunately, the existence of the ditch was unknown to the geophysical field
party at the time of testing.

41. Results from line R-4 indicate that three velocity zones may be
defined. The first layer with a velocity of 770 fps has a thickness of
approximately 2.5 ft, The second layer, highly weathered granite, has a
velocity of 6,140 fps and extends to a depth of approximately 28 ft where the
less weathered granite is encountered with a velocity of approximately
12,790 fps.

42. Seismic refraction line R-3 was run on the downstream toe of the
Right Wing Dam between approximate Stations 253+00 and 256+25. The line was
run on fill material. Figure 26 presents the TD plot obtained from refraction
line R-3. The data indicate three velocity zones. The topmost zone, fill and
overburden material, is approximately 4 ft thick and has an average velocity
of 800 fps. The second interpreted zone, which probably corresponds to the
highly weathered granitic material, has a true velocity of 3,420 fps and
extends to a depth of approximately 23 ft. The less altered granite is
interpreted as having a true velocity of 13,730 fps.

43. Refraction line R-2 was located on the downstream toe of the Right
Wing Dam between approximate Stations 267+00 and 270+25. The TD plot for
refraction line R-2 is presented in Figure 27. The TD plot indicates that
three P-wave velocity zones may be determined. The uppermost zone has an

average velocity of 710 fps and extends to an average depth of 3 ft. The
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second zone, which corresponds to highly weathered granite, has a true

velocity of 5,000 fps and extends to an average depth of approximately 20 ft
where the less weathered granite with a true velocity of 14,350 fps is
encountered. Inspection of the TD plot indicates, as expected, a degree of

variability inthe thickness of the highly weathered granite.

Surface vibratory tests
44. Ten, 200-ft long, vibratory lines were run along the crest and

downstream toe of the Right Wing dam as illustrated in Figure 22. The results
of the vibratory tests are presented in Figures 28 through 32. Vibratory
lines V-3 and V-4 were run along the crest of the Right Wing Dam with the
vibrator positioned between borings US-2 and SS-2, approximate Station 235+00.
The results from lines V-3 and V-4 are presented in Figure 28. The data
suggest that the R-wave velocity increases slightly with depth and ranges
between 900 and 1,000 fps. The depth of investigation ranged between
approximately 5 and 60 ft. Vibratory lines V-1 and V-2 were run along the
crest of the Right Wing Dam with the vibrator positioned between borings US-3
and SS-3, approximate Station 269+50, as shown in Figure 22. The velocity
profile for lines V-1 and V-2 is presented in Figure 29 and is very similar to
that of lines V-3 and V-4, These data show that the velocities increase
slightly with depth and range in velocity between 900 and 1,000 fps over the
5- to 60-ft depth range. Vibratory lines V-23 and V-24 were run along the
downstream toe of the Right Wing Dam with the vibrator positioned at
approximate Station 240+75 and the results are presented in Figure 30.
Vibratory data for line V-24, run between approximate Stations 238+75 and
240+75 is quite erratic and is felt not to be valid and, consequently, is not
used in determining a best fit curve through the data. The R-wave velocity
for line V-23 is approximately 1,250 fps between depths of 10 and 20 ft at
which point the velocity decreases gradually with depth to approximately
1,175 fps at 40 ft where the velocity remains constant to a depth of 60 ft.
Figure 31 presents the R-wave velocity versus depth for vibratory lines V-19
and V-20 which were run on the downstream toe of the Light Wing Dam between
approximate Stations 251450 and 255+50. Because of inaccessibility to the
site, the vibratory line was offset approximately 300 ft from the toe of the

dam and was located on an area that appeared to be backfilled with about a
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10- to 20-ft thick layer of random fill. Data from line V-20 is deemed to be
unusable and is not used in determining the R-wave velocity versus depth
curve, R-wave velocities from line V-19 ranged from approximately 675 fps
from a depth of 5 ft to 825 fps to a depth of 60 ft. Vibratory lines V-17 and
V-18 were run on the downstream toe of the Right Wing Dam with the vibrator
centered near approximate Station 273+00 offset approximately 150 ft from the
toe of the dam. The results for lines V-17 and V-18 are shown in Figure 32.
The data for these lines are somewhat erratic, probably due to the varying
intensities of weathering in the granite along the survey lines; however, a
trend in the velocities versus depth is evident. Figure 32 shows the R-wave
velocity increasing slightly with depth from a velocity low of approximately
1,050 fps at a depth of 10 ft to a high of 1,150 fps at a depth of 60 ft.

Crosshole tests

45. A total of six sets of boreholes were used to conduct crosshole
tests at Stations 235+00 and 269+50 of the Right Wing Dam, as shown in
Figure 22. Tests were conducted in borings on the centerline of the dam, the
downstream shoulder, and the downstream slope at each station. The boring
sets on the centerline and shoulder of the embankment were cased with PVC pipe
and consisted of two borings per set; whereas, the boring set on the
downstream slope were cased with steel pipe and consisted of three in-line
boreholes. Testing was conducted at 5-ft depth increments for each borehole
set.

46. Station 235+00 is a section constructed over an existing embankment
constructed of compacted decomposed granite. Borings US-2 and SS-2 were used
for crosshole testing on the centerline of the embankment at Station 235+00.
These borings were approximately 96 ft in depth and were designed to obtain
seismic velocities representative of the compacted decomposed granite of Zone
C, the underlying existing embankment, and foundation materials. Borings US-9
and S§5-9, located on the downstream shoulder, were approximately 31 ft in
depth and were designed to provide velocities of both the the impervious core
and the embankment gravels. The crosshole tests cohducted on the downstream

slope were performed in borings SCB2-A, SCB2-B, and SCB2-C which were about

20




T

40 ft deep. The crosshole tests conducted on the downstream slope provided

information regarding seismic velocities of the embankment gravels, Zone B,
the impervious core, and the Zone A rockfill section.

47. The crosshole tests at the centerline of the dam, Station 269+50,
were conducted in borings US-3 and SS-3 and were approximately 86 ft in depth.
The tests performed in these borings were intended to obtain seismic
velocities of the core materials, Zone C. Crosshole sets US-8 and SS5-8 were
located on the downstream shoulder and were approximately 26 ft in depth.
These borings penetrated Zone A, B, and C materials. Borings SCB3-A, SCB3-B,
and SCB3-C, used for crosshole testing on the downstream slope of the dam,
were approximately 86 ft deep. These borings penetrated Zones A, B, and C and

extended into the weathered granite foundation.

48. Station 235+00 P-wave tests, Plots of the calculated true P-wave

velocity versus depth for each of the three crosshole sets at Station 235+00
are presented in Figures 33 through 35. Figure 36 shows the P-wave velocity
zones interpreted from the three crosshole sets superimposed on the section at
Station 235+00. The results of testing on the centerline of the dam
(crosshole set US-SS-3) indicate that the P-wave velocities measured in the
compacted decomposed granite of Zone C and the preexisting embankment
generally increased with depth and ranged from 1,600 fps to 3,600 fps. The
velocity of the weathered granite foundation is 9,700 fps. Results of testing
on the downstream shoulder of the dam (crosshole set US-S$S-9) indicate that
the P-wave velocities in the upper 18 ft are 1,925 fps and are representative
of the Zone A rockfill material of the shell. Between a depth of 18 and

30 ft, the tests were performed in Zone C where a velocity of 2,875 fps was
measured. Testing on the downstream slope (crosshole set SCB2-ABC) indicates
that Zone B consists of two velocity zones with values of 1,150 and 1,875 fps.
The underlying foundation was measured as having a velocity of about

4,875 fps.

49. Station 235+00 S-wave tests. The calculated true S-wave versus

depth for the three crosshole sets conducted at Station 235+00 are presented
in Figures 37 through 39. Tigure 40 shows the S-wave velocity zones

interpreted from the three crosshole sets superimposed on the section at
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Station 235+00. The tests performed on the centerline and at the downstream

shoulder show that the velocities of the compacted decomposed granite in

Zone C and preexisting embankment ranged between 975 and 1,300 fps. The

velocities increased with depth. The velocity of Zone B was about 775 fps

based on measurements taken at the downstream slope set between depths of

0 and 22 ft. The velocity for the foundation, between depths of 22 and 40 ft,

was approximately 1,550 fps and was determined from testing in the downstream

slope boring set. The weathered granite foundation beneath the core was

determined to have an S-wave velocity of 1,950 fps.

50, Station 269+50 P-wave tests., The calculated true P-wave velocity
versus depth for each of the three crosshole sets at Station 269450 are

presented in Figures 41 through 43. Figure 44 shows the P-wave velocity zones

interpreted from the three crosshole sets superimposed on the section at

Station 269+50. The velocities obtained from crosshole testing on the

centerline of the crest (crosshole set US-$S-3) indicate that Zone C materials

generally increase with depth and range between 1,625 and 3,300 fps. Results

from testing on the downstream shoulder (crosshole set US-5S-8) show a

velocity zone of 1,275 fps extending from the surface to a depth of about

12 ft and correlating with Zone A and B materials. The underlying Zone C

material was determined to have a velocity of 2,875 fps. The crosshole

results from testing on the downstream slope of the dam (SCB3-A,B,C) show that
the P-wave velocity for the zone extending from the surface to a depth of
approximately 8 ft has a velocity of 1,875 fps, and it is believed that this
velocity may be abnormally high because of the influence of the asphalt road.

The next three zones have P-wave velocities of 1,500, 1,850, and 3,575 fps and

correspond to Zones A and B. The 3,575-fps velocity zone may correspond to

Zone B materials or highly weathered granite. The more competent granite

foundation had a velocity of 12,450 fps.

51. Station 269450 S-wave tests., The calculated true S-wave velocities

for each test elevation for the three crosshole sets at Station 269+50 are

presented in Figure 45 through 47. Figure 48 shows the S-wave velocity zones

interpreted from the three crosshole sets superimposed on the section at

Station 269450, Testing on the centerline of the dam indicated that the

22




- e e -

T T T T T T TR - vy

Zone C material in the impervious core tended to increase with depth and
ranged between 900 and 1,425 fps. Data acquired from the tests at the
downstream shoulder and downstream slope indicate that the S-wave velocity of
the Zone A rock fill ranges between 850 and 950 fps. Measurements taken in
boring sets located on the downstream shoulder and downstream slope show that
the velocity for the Zone B gravel ranged from 1,025 to 1,325 fps. The
weathered granite foundation has an S-wave velocity between 1,700 and

1,875 fps as determined from testing in the SCB3-A,B,C borehole set located on

the downstream slope of the dam.

Downhole tests

52. Downhole P- and S-wave tests were conducted in boring sets (the
same boring sets used for crosshole testing) located on the crest of the dam
(centerline), downstream shoulder, and the downstream slope for Stations

235+00 and 269+50 as shown in Figure 22.

53. Station 235400 P-wave tests, Results of the downhole P-wave

surveys from the centerline and downstream shoulder for Station 235+00 are
presented as velocity versus slant distance (depth) and zre shown in

Figures 49 and 50. The downhole P-wave information collected from the
downstream slope (borings SCB2-A,B,C) was not used because it appears that the
waves traveled along the steel casing and also the loose nature of the near
surface gravels impeded the propagation of the P-waves. Figure 51 shows the
downhole P-wave velocity zones interpreted from the two boring sets
superimposed on the section at Station 235400. Figure 51 shows that Zone C
materials range in velocity between 1,600 and 3,160 fps and that Zone B, the
upper 10 ft tested on the downstream shoulder, has a velocity of 1,300 fps.
The foundation beneath the centerline of the dam has a velocity of 9,230 fps.

54. Station 235+00 S-wave tests. Results of the downhole S-wave

surveys from the centerline and downstream shoulder for Station 235+00 are
presented as velocity versus slant distance and are shown in Figures 52 and
53. No downhole S-wave data is presented for the downstream slope borings.
The velocity zones interpreted from downhole testing were superimposed on the

section at 235+00 and are shown in Figure 54.
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55. Station 269+50 P-wave tests, Results of the downhole P-wave

surveys from the centerline, downstream shoulder, and downstream slope for
Station 269450 are presented as velocity versus slant distance (depth) and are
shown in Figures 55 through 57. Figure 58 shows the downhole P-wave velocity
zones interpreted from the three boring sets superimposed on the section at
Station 269+50. The downhole P-wave results show that the core’s velocity
varies between 1,725 and 4,000 fps. The figure also indicates that Zone B has
velocities that vary between 1,300 and 4,615 fps. Velocities between 1,300

and 2,170 fps were measured in Zone A. The granite foundation was measured as

having a value of 4,615 fps.

56. Station 269+50 S-wave tests Results of the downhole S-wave

surveys from the centerline, downstream shoulder, and downstream slope for
Station 269450 are presented as velocity versus slant distance and are shown
in Figures 59 through 61. The velocity zones interpreted from downhole
testing were superimposed on the section at Station 269+50 and are shown in
Figure 62. Figure 62 indicates that the core's velocity ranges between 875
and 1,600 fps and that the velocity increases as a function of depth. Zonme B
was determined to have velocities between 1,200 and 1,740 fps. Velocities of
830 and 925 fps were measured in Zone A. The granite foundation showed a

velocity of 1,925 fps beneath the shell.

Data Consolidation

57. Composites of the various geophysical techniques conducted along
approximate Station 235400 were prepared for P- and S-wave velocity profiles
and are presented in Figures 63 and 64, respectively. Five zones of the dam
were tested at this station: the central impervious zone, the preexisting
embankment, Zone A, Zone B, and foundation materials. Figures 65 and 66
present the composites prepared for P- and S-waves for the section at
approximate Station 269+50. Tests performed at this station examined the same
Zones as were tested at Station 235+00 with the exception of the preexisting

embankment .
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LEFT WING DAM

Description

58. The Left Wing Dam is a zoned embankment dam which flanks the
southeast portion of the Concrete Gravity Dam. The Left Wing Dam is founded
on the same weathered quartz diorite granite as the Right Wing Dam. The Left
Wing Dam is approximately 2,100 ft long and 167 ft high. The core consists of
well compacted decomposed granite (Zone G, scraped from the weathered granite
foundation), and is flanked upstream and downstream by 12-ft wide filters
(Zone F). The upstream and downstream shells (Zone E) are constructed of
gravels obtained from dredged tailings in the Blue Ravine. The slopes of the
dam are the same as the Right Wing Dam. A plan view of the Left Wing Dam is

shown in Figure 67 and a typical cross section is shown in Figure 68.
Test Results
59. Figure 67 shows the location and layout of the geophysical tests
conducted at the Left Wing Dam. The geophysical program consisted of seismic

refraction, crosshole, downhole, and surface vibratory testing.

Surface seismic refraction tests

60. The original geophysical plan for the Left Wing Dam consisted of
running two seismic refraction tests, one line located on the centerline of
the crest and another line along the downstream toe. However, detonation of
one 2.5-1b charge at a depth of 5 ft at the centerline of the dam damaged the
asphaltic pavement. SPK personnel directed the geophysical crew to
discontinue further use of explosives on the crest for fear of further damage
to the pavement and possibly to the core of the dam. No results are presented
for this seismic refraction line.

61. Refraction line R-5 was run along the downstream toe of the Left
Wing Dam between approximate Stations 302425 and 306+25 as shown in Figure 67.
The results of refraction line R-5 are presented in Figure 69. Line R-5

indicated two velocity layers. The first layer, which is believed to
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correspond to severely weathered granite, has an average P-wave velocity of
1,780 fps and extends between 28 and 24 ft in depth. The second layer,
believed to correlate with fresher granite, has a true velocity of 14,160 fps.
The refraction data indicate that the contact between the weathered and fresh

granite is quite irregular as expected,

Surface vibratory tests

62. Four, 200-ft long, vibratory lines were run along the centerline of
the crest and downstream toe as shown in Figure 67. The results of vibratory
lines V-25 and V-26, centered near Station 303490 and run along the crest, are
presented in Figure 70. These data indicate an R-wave velocity of
approximately 900 fps between depths of 5 and 60 ft. Data obtained from
vibratory lines V-21 and V-22 (Figure 71) centered at approximate Station
303+90 and run along the downstream toe showed a very high degree of scatter

and are therefore deemed to be unusable.

Crosshole tests

63. Crosshole P- and S-wave tests at the Left Wing Dam were conducted
in three sets of borings along approximate Station 303490 as indicated in
Figure 67. Borings US-4 and SS-4, which were located on the centerline of the
dam, were approximately 155 ft deep and spaced 10 ft apart; whereas, borings
US-5 and SS-5, located on the downstream shoulder of the crest, were 25 ft
deep and 10 ft apart. These borings were cased with 4-in. ID PVC pipe. The
borings located on the crest (borings US-4 and $S-4) extended through the core
(Zone G) and into the granite foundation. The tests conducted in borings US-5
and SS-5 (downstream shoulder) were designed to obtain P- and S-wave
velocities of the core and embankment gravels (Zone E). The third set of
borings, located on the downstream slope of the dam, designated SCB4-A,B,C,
consisted of three in-line borings, and were approximately 85 ft deep. They
were designed to penetrate the embankment gravels (Zone E) and the granite
foundation. The borings on the downstream slope were steel-cased and drilled

with Odex equipment.

26

T Py




NPl epad

- oy

EAarw ama
Pl

64. P-wave tests, The calculated true P-wave velocities, as determined
by the CROSSHOLE computer program, for each test elevation for the three
crosshole sets are presented in Figures 72 through 74. As previously
mentioned, testing was conducted at 5-ft depth intervals.

65. Figure 75 shows the P-wave velocity zones interpreted from the
three crosshole sets superimposed on the section at Station 303+90. The
P-wave tests for crosshole set S§S-US-4 (crest) representative of the core and
foundation materials indicated nine velocity zones. The data from the
centerline show that the velocities in the decomposed granite core (Zone G)
generally increase with depth, with the exception of the two velocity
reversals at depths of 88 and 108 ft. The velocities in the core range between
1,600 and 4,450 fps. The velocity of the granite foundation, beneath the core,
was measured to be between 6,025 and 9,975 fps. The P-wave crosshole results
for crosshole set US-SS§-5 (downstream shoulder) indicated that the top 12 ft
(Zone E) had a velocity of 1,100 fps; whereas, the interval between depths of
12 and 25 ft (Zone G) had a velocity of 2,125 fps. The P-wave test for
crosshole set SCB4-A,B,C (downstream slope) representative of the shell and
foundation materials indicated five velocity zones. The P-wave velocity zones
between depths of 0 and 68 ft correspond to the shell materials and range
between 1,150 and 2,250 fps. The 4,900-fps velocity layer encountered at an
approximate depth of 68 ft corresponds to the filter blanket or highly
weathered granite and is interpreted to have a thickness of approximately
6 ft. Underlying this layer is the less weathered granite foundation with a
velocity of 8,900 fps.

66. S-wave tests. The calculated true S-wave velocities, as
determined by the CROSSHOLE computer program, for each test elevation for the
three crosshole sets are presented in Figures 76 through 78.

67. Figure 79 shows the S-wave velocity zones interpreted from the
three crosshole sets superimposed on the section at Station 303+90. S-wave
crosshole testing in borehole set SS-US-4 indicated six velocity zomes. The
crosshole data show that the S-wave velocity of the core materials increases
with depth and ranges in velocity between 975 and 1,300 fps. The S-wave
velocity of the granite foundation beneath the centerline of the dam ranges
between 1,575 and 1,925 fps. The S-wave data for crosshole set US-SS5-5 showed
that Zone E materials between approximate depths of 0 and 18 ft had a velocity
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of 850 fps; whereas, the Zone G materials between depths of 18 and 25 ft had a
velocity of 950 fps. The S-wave test for crosshole set SCB4-A,B,C indicated
four velocity zones. The first three S-wave velocity zones correspond with
the gravel shells and range in velocity between 900 and 1,250 fps. The granite
foundation beneath the shell has a velocity of 2,450 fps.

Downhole tests

68. Downhole P- and S-wave tests were conducted in borings SS-4
(crest), SS-5 (downstream shoulder), and SCB4-A and SCB4-C (downstream slope)
as shown in Figure 67. These tests were performed at 5-ft depth increments.

69. P-wave tests, The downhole P-wave tests conducted in the three
boring sets at the Left Wing Dam are presented in time versus slant distance
plots in Figures 80 through 83. Figures 82 and 83 show the downhole P-wave
data collected in borings SCB4-A and SCB4-C. Figure 82 presents the downhole
data for the P-wave source located 5 ft from the mouth of the borings while
Figure 83 presents the downhole data for a source-to-boring distance of
approximately 12.7 ft. Figure 84 shows the downhole P-wave velocity zones
interpreted from tests performed at the three boring sets superimposed on the
section at Station 303+90.

70. S-wave tests The downhole S-wave tests conducted in the three

boring sets are presented in time versus slant distance plots in Figures 85
through 88. Figure 87 presents the downhole S-wave data collected in boring
SCB4-A with a source-to-boring distance of approximately 10.7 ft while

Figure 88 presents the data collected in boring SCB4-C with a source-to-boring
distance of 7.0 ft. Figure 89 shows the downhole S-wave velocity zones
interpreted from tests performed at the three boring sets superimposed on the

section at Station 303+90.
Data Consolidation
71. The results of the tests conducted at the Left Wing Dam were

superimposed on a cross section to allow comparisons. Figure 90 presents a

composite of the P-wave velocity results from crosshole, downhole and seismic
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refraction testing conducted at approximately Station 303490 of the Left Wing
Dam. Figure 91 presents a composite of the S-wave velocity results from

surface vibratory, crosshole, and downhole testing.

ORMON ISIAND AUXILIARY D

72. Mormon Island Auxiliary Dam was constructed in the Blue Ravine, an
ancient channel of the American River, that is more than 1 mile wide at the
dam site. For about 1,650 ft of its width, the Blue Ravine is filled with
auriferous, gravely alluvium of Pleistocene age. The maximum thickness of the
channel gravels is approximately 65 ft. The gravels have been dredged for
their gold content in the deepest portion of the channel and coarser materials
near the top. The remaining undisturbed alluvium is crudely stratified and
slightly cemented.

73. Mormon Island Auxiliary Dam is a zoned embankment dam 4,820 ft
long, 165 ft high from core trench to crest at maximum section. The shells
are constructed of gravel dredged tailings from the Blue Ravine. The narrow,
central impervious core is a well compacted clayey mixture founded directly on
rock over the entire length of the dam to provide a positive seepage cutoff.
Two transition zones, each 12-ft wide, flank both the upstream and downstream
sides of the core. The transition zones in contact with the core are composed
of well compacted decomposed granite which classifies as a silty-sand
according to the USCS. The second transition zones are constructed of
the -2 in. fraction of the dredged tailings. A plan and typical sections of
the dam are shown in Figures 92 and 93.

74. From the right end of the dam, Station 412+00, to Station 441+50
and from Station 456450 to the left end of the dam, Station 460+75, all zones
are founded on rock. Between Stations 441+50 and 456+50, the undisturbed and
dredged alluvium was excavated to obtain slopes of 1.0V:2.0H to found the core
and most of the filter zones on rock, but the shells are founded on alluvium.
The dredged portion of the alluvium begins at approximately Station 446 and

continues to approximately Station 455. The slopes of the dam vary according
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to the foundation conditions, with the flattest slopes in vicinity of the

dredged tailings. The downstream slopes of the dam vary between 1.0V:2.0H and
1.0V:3.5H, and the upstream slopes vary between 1.0V:2.0H and 1.0V:4.5H.

Test Results

75. Figure 94 shows the location and layout of the geophysical tests
conducted at Mormon Island Auxiliary Dam. The geophysical investigation
consisted of seismic refraction, surface vibratory, crosshole, and downhole

testing.

Surface seismic refraction tests

76. Five refraction lines were run at Mormon Island Auxiliary Dam as
shown in Figure 94. Line R-1 was run along the crest of the dam and was
862 ft long. Line R-1 was a one-ended line. The reverse traverse of line R-1
was never completed to avoid any potential damage that the core might incur
from further detonation of explosives. The velocities reported may not be
true velocities since line R-1 was a one-ended line. This line was run in
order to obtain P-wave velocity information of the core and foundation
materials. The TD plot for line R-1 is presented in Figure 95.

77. Seismic refraction line MR-5 was run along the downstream toe of
the dam on the left abutment as shown in Figure 94. The length of the line
was 387 ft long with 20-ft geophone spacings. Line MR-5 was run to acquire
information on overburden and foundation materials near the downstream left
abutment of the dam. The TD plot for line MR-5 is presented in Figure 96.
Analysis of the data indicates that the near surface materials are not
continuous across the length of the line and therefore true velocities cannot
be calculated. Depths to the tops of layers are approximate since they are
calculated based on apparent velocities. Information obtained from shooting
from south to north indicates that a zone with a velocity of 890 fps extends
to a depth of 6 ft where a second layer with a velocity of 1,890 fps is
encountered. These two velocity zones are believed to correspond to gravelly
alluvium, sandstone, mudstone, and siltstone material as reported in Mormon
Island Auxiliary Dam, Foundation Report 1953. The layer with a velocity of
13,570 fps encountered at a depth of approximately 32 ft corresponds to
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bedrock. Shooting from north to south three velocity zones were measured.

The uppermost zone, overburden materials, had a velocity of 1,130 fps and a
thickness of approximately 9 ft. The second velocity zone, with a thickness of
approximately 29 ft, is believed to correspond to weathered bedrock. Less
weathered, fresher bedrock with a velocity of 11,350 fps is found at a depth
of approximately 38 ft. The velocity of the bedrock in this area is
approximately 12,360 fps.

78. Seismic refraction line MR-4 was run on the downstream toe of
Mormon Island Auxiliary Dam centered approximately on borings SCB-234 as shown
in Figure 94. The length of line MR-4 was 800 ft and a geophone spacing of
25 ft was used. The TD plot for line MR-4 is presented in Figure 97. Line
MR-4 was run almost entirely over the area underlain by dredged tailings. The
heterogeneity of the buried dredged tailings is expressed on the TD plot by
the considerable amount of scatter of the arrival times. Three velocity
layers were interpreted from a result of this survey. The uppermost layer has
a P-wave velocity of 2,510 fps and ranges in depth from 14 ft at the
southwestern shotpoint to 34 ft at the northeastern portion of the line. The
second layer extends to a depth of 77 ft at the southwestern shotpoint and to
73 ft at the northeastern shotpoint and has a velocity of 5,530 fps. The first
two layers correlate with the dredged gravels. Bedrock had a true velocity of
15,090 fps in this area.

79. Seismic refraction line MR-6 was run on undisturbed alluvium
approximately 100 ft downstream of the toe of Mormon Island Auxiliary Dam near
crosshole borings MID1 and MID2 as shown in Figure 94. This line was 75 ft in
length. The TD plot for this data is shown in Figure 98 from which three
velocity zones were interpreted. The first layer had a P-wave velocity of
1,070 fps and had a thickness of 1.0 to 1.5 ft. The second layer with a
velocity of 1,760 fps extended to a depth of 10 ft at the southwestern
shotpoint and to a depth of 14 ft at the northeastern end. These two velocity
layers correspond to clayey gravel. The third layer which corresponds to
undredged alluvial materials had a velocity of 4,340 fps.

80. Seismic refraction line MR-3 was run approximately 100 ft
downstream of the toe of Mormon Island Auxiliary Dam as shown in Figure 94,
Line MR-3 was 400 ft in length and had geophone spacings of 20 ft. This line

was run to obtain the P-wave velocities for overburden, weathered rock, and
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bedrock. The TD plot for line MR-3 is presented in Figure 99 from which three
velocity layers were interpreted. The first layer, corresponding to
overburden materials, has an average P-wave velocity of 1,910 fps and ranges
in depth between 7.5 and 9 ft. The second layer encountered, with a true
velocity of 3,920 fps, is believed to correspond with highly weathered
bedrock. The second layer ranges in depth between 32 ft at the southwestern
end to 36 ft at the northeastern end which happens to be located part way up a
knoll. Fresh, unweathered bedrock is interpreted as having a true velocity of
15,550 fps.

Surface vibratory tests

81. Eight surface vibratory lines were run at Mormon Island Auxiliary
Dam as shown in Figure 94. Two lines were run along the crest of the dam and
six lines along the downstream toe. The length of each vibratory line was
200 ft with the exception of lines V-13 and V-14 which had respective lengths
of 160 and 130 ft. Lines V-9 and V-10 were run along the crest of the dam
between approximate Stations 448+00 and 452+00. Lines V-13 and V-14 were run
along the downstream toe near the left abutment. Lines V-15 and V-16 were run
between approximate Stations 446+50 and 450+50 on the downstream toe over
dredged tailings. Vibratory lines V-11 and V-12 were run on the downstream
toe between approximate Stations 423+80 and 427+80.

82. The depth versus R-wave velocity plot for lines V-9 and V-10 is
presented in Figure 100. This plot shows velocities ranging between 790 and
900 fps between depths of 5 and 55 ft. Figure 101 presents a plot of R-wave
velocity versus depth for lines V-13 and V-14 and it shows that R-wave
velocities increased from approximately 720 fps at a depth of 5 ft to 780 fps
at a depth of 41 ft. Results from lines V-15 and V-16 are presented in
Figure 102. Results indicated that R-wave velocities decreased from
approximately 620 fps to 550 fps between depths of 5 and 12 ft. Between depths
of 12 and 45 ft velocities gradually increase to a maximum value of 680 fps.
The R-wave velocities versus depth plots for lines V-11 and V-12 are presented
in Figure 103. The data exhibit a general increase in R-wave velocity as a
function of depth. Velocities in this area increase from approximately
600 fps to 725 fps between depths of 5 and 45 ft.
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Crosshole tests
83. A total of six crosshole sets were employed at Mormon Island

Auxiliary Dam for obtaining P- and S-wave velocities as a function of depth.
The location of the crosshole sets are shown in Figure 94. Crosshole tests
were conducted on the dam’s centerline, downstream shoulder, downstream slope,
and downstream toe. The boring sets which were located on the crest at
approximate Station 448+00 (borings US-6 and S5-6), downstream edge at
approximate Station 448+00 (borings US-7 and S$S-7), and downstream toe at
approximate Station 441400 (borings MID1 and MID2) were cased with PVC pipe.
Borings located on the downstream slope at approximate Station 448 (borings
SCB5-A,B,C) and in the dredged area on the downstream toe at approximate
Station 449 (borings SCB-2,3,4) and approximate Station 454 (borings
SCB-9,5,6,7,8) were drilled with the Odex system and were cased with steel
pipe.

84. Borings US-SS-6, located on the centerline of the dam, were 190 ft
deep and provided velocities of the Zone 4 core material and the rock
foundation. Borings US-SS-7, located on the downstream edge of the crest,
were 50 ft in depth and were used to obtain velocities of the Zone 3 filter
material and Zone 1 shell material. Borings SCB5-A,B,C, located on the
downstream slope of the dam, were 120 ft deep and were designed to penetrate
the downstream shell (Zone 1), the dredged alluvium, and bedrock. Boring sets
SCB-2,3,4 (80 ft deep) and set SCB-9,5,6,7,8 (maximum boring depth 80 ft) were
used to gather velocity information regarding the dredged alluvium and
bedrock. Boring set MID-1,2, which was approximately 50 ft deep, was used to
obtain information on the undisturbed alluvium and bedrock. Testing was
conducted at 5-ft depth increments for each boring set with the exception of

boring set MID-1,2 in which testing was conducted at 2.5-ft depth increments.

85. P-wave tests. The results of crosshole P-wave testing conducted at
Mormon Island Auxiliary Dam are presented in depth versus velocity fashion in
Figures 104 through 109. Figure 110 displays crosshole P-wave velocity zones
in relationship to the various materials tested for the section at approximate
Station 448. Figure 111 displays the crosshole results obtained from testing

along the toe of the dam.
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86. The results of crosshole testing in borings US-6 and 85-6 (crest
centerline) indicated that the P-wave velocity of the core materials ranged in
velocity between 1,975 and 4,500 fps and the foundation materials had a
velocity of 10,850 fps. The results of testing in borings US-7 and SS-7
(downstream shoulder) show that the upper 15 ft, which corresponds to the
Zone 1 materials, had a velocity of 1,800 fps. The Zone 3 materials had
velocities ranging between 2,050 and 3,150 fps. Data collected in boreholes
SCB5-A,B,C indicated that the P-wave velocities for the downstream shell (0 to
42 ft) ranged between 1,475 and 2,250 fps. The P-wave velocities for the
dredged tailings in the downstream shell ranged between 1,075 and 5,400 fps;
whereas, the foundation materials exhibited a 9,275 fps velocity. P-wave
velocities measured in crosshole set SCB-5,6,7,8,9 ranged between 1,125 and
5,750 fps for the dredged tailings,whereas, bedrock, encountered at an
approximate depth of 62 ft, exhibited a velocity of 10,800 fps. The results
of testing conducted in borehole set SCB-2,3,4 suggest that the dredged
tailings in this area have a velocity ranging between 2,600 fps to 6,575 fps;
whereas, the bedrock, encountered at a depth of approximately 68 ft, had a
velocity of 14,800 fps. The results of crosshole testing in borings MID-1,2
located near approximate Station 441 show that velocities ranged between 1,390
and 5,200 fps between the surface and a a depth of approximately 26 ft. These
velocities correspond to overburden material (clayey gravel and undredged
alluvium). Bedrock, which underlies these materials, b-s a P-wave velocity,

depending on the degree of weathering, ranging between 7,510 and 11,260 fps.

87. S-wave tests, The results of crosshole S-wave testing conducted at

Mormon Island Auxiliary Dam are presented in depth versus velocity fashion in
Figures 112 through 117. Figure 118 displays crosshole S-wave velocity zones
in relationship to the various materials tested for the section at approximate
Station 448+00, while Figure 119 displays the crosshole results obtained from
testing along the downstream toe of the dam.

88. Crosshole results from crosshole set US-SS-6 located on the
centerline of the crest indicate that S-wave velocities in the core material
were fairly consistent with velocities ranging between 1,000 and 1,350 fps
and, in general, increased with depth. The bedrock foundation encountered at

an approximate depth of 166 ft had a velocity between 3,150 and 3,750 fps.
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The results of crosshole testing in crosshole set US-SS-7 indicate that S-wave
velocities are fairly consistent, ranging between 900 and 1,075 fps, from the
surface to a depth of approximately 42 ft at which point the velocity
increases to 1,325 fps. The S-wave velocity versus depth plot for crosshole
set SCB5-A,B,C located on the downstream slope shows that the shell material
has velocities of between 825 and 1,200 fps to a depth of approximately 42 ft
at which point the dredged tailings are encountered with a velocity of

625 fps. Bedrock is construed to correlate with the 2,900 fps velocity
encountered at an approximate depth of 88 ft. Results of crosshole testing in
boring set MID-9,5,6,7,8 suggest that velocities in the dredged tailings
increase with depth and range from 525 to 925 fps. The underlying bedrock,
with a velocity of 3,150 fps, was encountered at approximately 60 ft in depth.
Testing in boring set MID-2,3,4 indicates that the velocities ranging between
400 and 475 fps correspond with the buried dredged tailings. The underlying
weathered bedrock is encountered at an approximate depth of 52 ft with
velocities ranging between 2,350 and 2,900 fps. Crosshole S-wave testing in
boring set MID-.,2 indicates that velocities increase from 680 to 1,560 fps
between the depth range of 0 and 28 ft. These velocities correspond to
overburden material (clayey gravel and undredged alluvium) as previously
mentioned. The underlying bedrock has a velocity range between 1,610 and
2,120 fps.

Downhole tests

89. Downhole P- and S-wave tests were conducted at each crosshole set
location at Mormon Island Auxiliary Dam as shown in Figure 94. Testing was
conducted at 5-ft depth intervals at each boring set with the exception of
boring set MID-1,2 in which downhole tests were performed at 2.5-ft depth
intervals.

90. P-wave tests, Figures 120 through 135 present the time versus

slant distance plots for the downhole P-wave tests conducted at Mormon Island
Auxiliary Dam. Downhole P-wave testing on the downstream slope of the dam was
performed by placing geophones in borings SCB5-A and SCB5-C and recording

signals from two different shot points (SP-A and SP-B), which were located on

the ground surface between the borings. It was difficult to obtain good
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quality data in these borings. This problem is believed to be caused by the
combined effects of the steel-cased borings and the inability of the materials
in the shell to propagate a P-wave signal effectively.

91. Borehole set SCB-9,5,6,7,8, located on the downstream toe of Mormon
Island Auxiliary Dam (Figure 94), was divided into two subsets of borings
(SCB-6,7,8 and SCB-9,5,6) for downhole P-wave testing purposes. Borings 6 and
8 were used as receiver holes and two shot points designated SP-A and SP-B
were used for downhole testing in crosshole subset SCB-6,7,8. No
interpretation is shown for downhole testing conducted in boring set SCB-6,7,8
because of the significant data scatter and the lack of velocity and depth
agreement between the tests. Borings 6 and 9 were used as receiver holes and
two shot points designated SP-A and SP-B were used for downhole testing in
crosshole subset SCB-5,6,9. The inability to collect good quality data is
again believed to be due to the steel casing and material properties as
previously mentioned.

92. Downhole P-wave tests for crosshole set SCB-2,3,4 were performed by
placing geophones in borings SCB-2 and SCB-4 and setting up two shot points
designated SP-A and SP-B near the borings.

93. Downhole P-wave tests were performed in each boring of boring set
MID-1,2 and are presented in Figures 134 and 135. A shot point was located
midway between the borings and the resulting seismic signal was recorded in
each boring at 2.5-ft depth increments.

94. Figure 136 displays downhole P-wave velocity zones in relationship
to the various materials tested for the section at approximate Station 448,
Averaged values from tests conducted on the downstream slope and in boring set
SCB-2,3,4 are presented in this figure. Figure 137 displays the downhole
results obtained from testing along the toe of the dam. The figure presents
averaged values from downhole tests conducted along the toe.

95. S-wave tests, Downhole S-wave tests were conducted at each
crosshole set location at Mormon Island Auxiliary Dam as shown in Figure 94.
Figures 138 through 148 present the time versus slant distance plots fer the

downhole S-wave data collected at Mormon Island Auxiliary Dam.
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96. Downhole S-wave testing on the downstream slope of the dam was
conducted by placing the shear wave source approximately midway between
borings SCB5-A and SCB5-C and recording the shear waves in borings SCB-5A and
SCB-5C at 5-ft depth intervals until the bottom of the borings were reached.

97. Borehole set SCB-9,5,6,7,8, located on the downstream toe of Mormon
Island Auxiliary Dam (Figure 94), was divided into two subsets of borings
(SCB-6,7,8 and SCB-9,5,6) for downhole S-wave testing purposes. Testing at bor-
ing set SCB-6,7,8 was performed by placing the S-wave source on the ground sur-
face, approximately halfway between borings SCB-6 and SCB-8, and recording the
seismic signals at 5-ft depth increments in borings SCB-6 and SCB-8. For
boring set SCB-9,5,6, the S-wave source was located approximately halfway
between SCB-6 and SCB-9, which were also used as receiver holes.

98 . Downhole S-wave tests for crosshole set SCB-2,3,4 (Figure 94) were
performed by placing geophones in borings SCB-2 and SCB-4 and placing the
S-wave source approximately halfway between borings SCB-2 and SCB-4, which
were used as receiver holes. The failure to obtain good quality data was
again caused by the steel-cased borings. This made the picking of accurate
arrival times very difficult and thus the results of the downhole S-wave tests
may be questionable.

99. Figure 149 displays downhole S-wave velocity zones in relationship
to the various materials tested for the section at approximate Station 448.
Results presented in this figure for testing on the downstream slope (Figures
140 and 141) and boring set SCB-2,3,4 (Figures 146 and 147) are averaged values.
Figure 150 displays the downhole results obtained from testing along the toe
of the dam. Results presented in this figure for testing in boring set
$CB-9,5,6,7,8 (Figures 142 through 145), and boring set SCB-2,3,4 (Figures 146

and 147) are averaged values.

Data Consolidation

100. P-wave velocity composite figures were prepared for the section
across approximate Station 448+00 and along the downstream toe of the dam and
are presented in Figures 151 and 152, respectively. The composite sections

show the results obtained from seismic refraction, crosshole, and downhole
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testing. S-wave velocity composite figures were prepared for the section
across approximate Station 448400 and along the downstream toe of the dam and

are respectively shown in Figures 153 and 154.

38




PART III: INTERPRETATION

DIKE 5
-Wave Velocities

101. The P-wave composite (Figure 20) was analyzed and a zonal velocity
interpretation was performed for Station 180+50 using weighted averaging and
judgment based on data quality and the limitations and advantages of each
test. Two approaches were used to present velocities for Dike 5. The first
approach does not involve the extrapolation or interpolation of velocities
beyond areas where measurements were made, and is presented in Figure 155.

The zoning through the core and foundation materials revealed nine zones. The
P-wave velocities in the core material ranged between 1,600 and 4,550 fps.

The granitic material beneath the centerline of the dike had a velocity of
9,750 fps. Five velocity zones were interpreted for the shell and underlying
foundation materials. The velocities in the shell ranged between 1,525 and
3,000 fps. The foundation beneath the shell has a velocity of 9,250 fps. The
P-wave velocities obtained at the toe of the dike indicated two velocity
zones. The first zone with a velocity of 2,110 fps corresponds to overburden
material (weathered granite); whereas, the second zone encountered at an
approximate depth of 10 ft had a velocity of 9,930 fps which corresponds to
less weathered granite.

102. The second approach for interpreting P-wave data was to assign
zonal velocities according to constructed zones of the dam and foundation
materials. This involves some interpolation and extrapolation based on the
principle that with other things being equal seismic wave velocities increase
with effective stress. The results of this method are presented in Figure 156
for the cross section through the Station 180+50. Seven P-wave velocity zones
were interpreted for the core materials and they ranged in velocity between
2,250 and 4,550 fps. The shell materials exhibited three velocity zone which
ranged between 1,575 and 2,400 fps. The overburden material at the toe of the
dike had a velocity of 2,110 fps. The average P-wave velocity for the granite
foundation was determined to be 9,650 fps.
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S-Wave Velocities

103. S-wave zonal interpretations were made in the same manner as
employed for P-wave interpretations previously discussed. Figure 157 presents
the S-wave zonal interpretation through the cross section at Station 180+50.
Seven S-wave velocity zones were determined for the dike’s core and foundation
materials. The velocities in the core ranged between 975 and 1,575 fps;
whereas, the foundation materials had a velocity of 2,225 fps. The shell
materials exhibited two velocities of 1,000 and 1,200 fps. The granite
foundation beneath the shell had a velocity of 2,700 fps. No S-wave
information was obtained at the downstream toe.

104. The second interpretation approach (based on constructed zones of
the dike) is presented in Figure 158. The core was divided into five velocity
zounes which ranged between 1,100 and 1,575 fps. The shell materials was
divided into two zones. The first zone with a thickness of approximately
10 ft had a velocity of 1,000 fps. The remainder of the shell had a velocity
of 1,200 fps. The foundation materials were determined to have a velocity of
2,450 fps.

RIGHT WING DAM

Station 235400 P-Wave Velocities

105. An analysis of the P-wave composite for Station 235+00 indicated
four velocity zones through the core and foundation materials as shown in
Figure 159. The velocities in the core ranged between 1,600 and 3,600 fps.
The velocity of the foundation beneath the core was determined to be
9,700 fps. The composite information obtained from testing in borings on the
downstream shoulder of the dam indicated a velocity of 1,600 fps which
corresponds to Zone B materials and a velocity of 3,025 fps corresponding to
Zone C materials, The shell materials, as measured from the downstream slope
borings, exhibited three velocity zones ranging between 1,150 and 4,875 fps.
P-wave information at the toe of the dam was obtained from seismic refraction

testing and this testing indicated 3 velocity zones for the foundation. The
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770-fps layer is believed to correspond with overburden material. The

6,140-fps layer corresponds to weathered granite while the 12,790-fps velocity
layer matches the velocity of fresh or slightly weathered granite.

106. The second interpretation approach (based on constructed zones of
the dam) is presented in Figure 160. The core materials consisting of the
test embankment and Zone C indicated three velocity zones ranging between
1,600 and 3,600 fps. Two velocity zones, 1,375 and 1,875 fps, were
interpreted for Zone B. The granite foundation was divided into three
velocity zones. The first zone corresponding to overburden materials, had a
P-wave velocity of 770 fps and was detected only at the top of the dam by the
seismic refraction method. The second velocity zone for the granite had a
velocity of approximately 5,500 fps and is believed to correspond to highly
weathered granite while the 11,250-fps velocity layer corresponds to fresh or

slightly weathered granite.

Station 235+00 S-Wave Velocities

107. An analysis of the S-wave velocity composite indicated four
velocity zones from testing along the centerline of the dam as shown in
Figure 161. These tests measured velocities in Zone C and test embankment,
which comprise the core, and the foundation. Velocities in the core ranged
between 975 and 1,450 fps; whereas, the underlying foundation had a velocity
of 2,050 fps. Tests conducted on the downstream shoulder of the dam measured
the velocities of the Zone B and Zone C materials. These tests indicated a
velocity of 900 fps for Zone B and a velocity of 1,125 fps for Zone C. The
tests conducted in the boring sets on the downstream slope indicated that the
Zone B materials had a velocity of 775 fps. The underlying weathered granite
had a velocity of 1,550 fps. Rayleigh wive tests conducted at the toe of the
dam exhibited velocities of 1,375 and 1,300 fps.

108. The interpretation based on constructed zones of the dam is
presented in Figure 162. The figure shows three velocity zones assigned to
the core materials. These velocities range in velocity from 975 fps to
1,450 fps. Zone B is shown as having a velocity of 850 fps. A 1,400-£fps
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velocity zone, believed to correspond to weathered granite, is shown to exist
beneath the shell and extending beyond the toe of the dam. The less weathered

granite was interpreted as having a velocity of 2,050 fps.

t o) 69+50 P-Wave V cities

109. An analysis of the P-wave composite for the dam at approximate
Station 269+50 indicated four velocity zones for the core materials as shown
in Figure 163. The P-wave velocity zones increase with depth and ranged from
1,675 to 3,150 fps. Testing conducted on the downstream shoulder of the dam
measured the Zone B and Zone C velocities. The velocities for the Zone B and
Zone C materials were interpreted to be 1,300 and 2,950 fps, respectively.
Tests conducted on the downstream slope of the dam determined velocities for
Zones A and B and underlying foundation materials. Two velocity zomes with
values of 1,680 and 1,825 fps were interpreted for Zone A. Velocities of
1,825 and 2,875 fps were interpreted for Zone B materials as a result of
testing in borings on the downstream slope. Foundation velocities beneath the
shell were interpreted to be 4,050 and 12,450 fps which correspond to
weathered and slightly weathered granite. P-wave velocities at the downstream
toe were obtained from seismic refraction testing and indicated three velocity
zones ranging between 710 and 14,350 fps.

110. The interpretation based on the constructed zones of the dam is
presented in Figure 164. Figure 164 shows the core being comprised of four
velocity zones increasing in velocity as a function of depth. These
velocities range between 1,675 fps and 3,150 fps. Zone B is shown as
consisting of three velocity layers. The velocity zones in Zone B increase
with depth and range in velocity between 1,300 and 2,875 fps. Zone A consists
of two velocity layers of 1,680 fps underlain by an 1,825-fps layer. The
upper 5 ft of overburden material at the toe of the dam had a velocity of
710 fps. Underlying Zone A and Zone B of the dam is a layer with a velocity
of 4,525 fps. This is interpreted as being weathered bedrock material. The
less weathered granite has a velocity of 13,400 fps.
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111. An analysis of the S-wave composite for the dam at approximate

Station 269+50 indicates that three velocity zones exist for the core
materials as shown in Figure 165. These velocities varied between 925 fps and
1,500 fps. The tests conducted on the downstream slope of the dam suggested a
velocity of 925 fps for Zone B materials and a velocity of 1,200 fps for

Zone C. The information collected from testing in borings on the downstream
slope of the dam indicated four velocity zones ranging between 850 fps and
1,725 fps. Information gathered at the toe of the dam revealed a velocity of
1,200 fps extending to a depth of approximately 60 ft.

112. The interpretation based on constructed zones of the dam is
presented in Figure 166. Materials in the core (Zone C) were interpreted as
having three velocity zones ranging in velocity between 925 and 1,500 fps.
Zone B is comprised of three velocity zones ranging between 900 and 1,725 fps.
Zone A consisted of one velocity zone of 900 fps. The upper 20 ft of
overburden material at the toe of the dam was interpreted as having an S-wave
velocity of 1,200 fps. The granite beneath the dam is interpreted as having a
velocity of approximately 1,900 fps.

LEFT WING DAM
P-Wave Velocities

113, Inspection of Figure 90, the P-wave velocity composite for the
Left Wing Dam shgced Zone G, the core of the dam, and the underlying
foundation consisting of six velocity zones as shown in the zonal
interpretation (Figure 167). The first four zones, which range in velocity
between 1,475 fps and 3,450 fps are believed to correspond to Zone G; whereas,
the 5,300- and 9,975-fps zones are believed to correspond respectively to the
weathered and less weathered granite. Borings located on the downstream
shoulder of the dam penetrated Zone E and Zone G. Tests conducted in these
borings showed a velocity of 1,100 fps for Zone E and a velocity of 2,125 fps

for Zone G. The combination of crosshole and downhole tests run in the
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borings on the downstream slope acquired P-wave information regarding Zone E
and its underlying foundation. These tests indicated that Zone E was
comprised of two velocity zones with velocities of 1,175 and 2,175 fps. The
4,900- and 8,900-fps layers correspond to weathered and less weathered
granite, respectively. P-wave velocities at the toe of the dam were obtained
from seismic refraction testing. This test measured the velocities of the
granite at the toe of the dam and indicated a velocity layer of 1,780 fps
corresponding to highly weathered granite and a second layer with a velocity
of 14,160 fps corresponding to slightly weathered granite.

114. The P-wave velocity interpretation based on the constructed zones
of the dam is presented in Figure 168. Zone G is shown to be comprised of
four velocity zones with velocities of 1,475, 2,225, 2,925, and 3,450 fps.
Zone E is comprised of a 1,150- and a 2,175-fps velocity zone. Beneath the
dam is a 5,100-fps zone that is believed to correspond to weathered bedrock.
This zone is approximately 20 ft thick beneath the core and pinches out as it
approaches the toe of the dam. The seismic refraction test conducted at the
downstream toe of the dam failed to reveal a layer which would correspond with
the 5,100 fps zone. This zone may continue beyond the toe of the dam;
however, it may be too thin to be detected by the refraction method. The
overburden material at the toe of the dam is shown as having thickness of
approximately 25 ft and a velocity of 1,780 fps. The less weathered granite
foundation has a velocity of 11,000 fps.

S-Wave Velocities

115. Figure 169 presents the S-wave interpretation for the Left Wing
Dam and is based on information obtained from the velocity composite
Figure 91. Interpretation of test results conducted at the centerline of the
dam indicated that four S-wave velocity zones exist -- the upper two zones
with velocities of 975 and 1,200 fps, correspond to the core; whereas, the
zones with velocities of 1,600 and 1,925 fps pertain to foundation materials.
The results from testing in borings located on the downstream shoulder of the
dam revealed two velocity zones. The first zone which extends to a depth of
approximately 17.5 ft had a velocity of 900 fps and corresponds to Zone E
while the second velocity zone which penetrated Zone G had a velocity of
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950 fps. Crosshole and downhole tests performed in borings located on the
; downstream slope of the dam indicated four velocity zones. The velocity of

the zones increased with depth. The first three zones which range in velocity
between 925 and 1,250 fps correspond to Zone E; whereas, the fourth zone with
a velocity of 2,450 fps is the velocity for the foundation. Velocities for
the granite varied between 1,600 and 2,450 fps. The inconsistency in velocity
values in the granite is caused by the varying degrees of weathering.

116. Figure 170 presents the S-wave interpretation for the Left Wing
Dam and is based on the constructed zones of the dam. Figure 170 shows
approximately the upper 25 ft of Zone G with a velocity of 975 fps. From a
depth of 25 ft to the foundation Zone G has a velocity of 1,200 fps. Zone E
consists of three velocity zones ranging in velocity between 925 and 1,250 fps
as shown in Figure 170. The foundation materials were interpreted as being
comprised of two velocity zones. The first zone has a velocity of 1,600 fps
which correlates with weathered granite. The second velocity zone has a

velocity of 2,200 fps and corresponds with less weathered granite.

MORMON ISIAND AUXILIARY DAM
P-Wave Velocities

117. An analysis of the P-wave composite for Station 448 (Figure 151)
indicates that six velocity zones exist through the core and foundation
materials as shown in Figure 171. The first five zones correspond to the core
material and increase in velocity as a function of depth. Velocities in the
core of the dam ranged between 1,625 and 4,500 fps. The bedrock beneath the
core was determined to have a velocity of 10,325 fps. The crosshole and
downhole tests conducted in borings on the downstream edge of the dam acquired
velocities in Zone 1 and the core. These tests indicated a velocity of
1,775 fps for Zone 1 and velocities of 2,425 and 5,275 fps for the core.
Measurements made in borings, located on the downstream slope of the dam,
provided velocity information for Zone 1, foundation dredge tailings, and
bedrock. The interpretation of the information suggested two velocity zones

having values of 1,375 and 2,400 fps for Zone 1. Three velocity zones were
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determined to exist in the foundation dredge tailings. The velocities in the
dredge tailings ranged between 1,575 and 5,400 fps. Bedrock was measured as
having a velocity of 9,275 fps. The P-wave information shown for the toe was
obtained from crosshole, downhole, and seismic refraction tests. The tests
indicated that six velocity zones exist for the dredge materials and bedrock.
The first four velocity zones, with velocities between 2,600 fps and

5,200 fps, correspond to the dredge tailings, The 6,050-fps layer is believed
to correspond to highly weathered bedrock. The bedrock velocity was measured
as 14,950 fps. It is assumed that materials are within the zone of saturation
if the degree of saturation equals or exceeds 99.5 percent. This implies that
the 2,600 fps encountered in the dredge tailings, at a depth of 32.5 ft, is
approximately 99.87 percent saturated as illustrated in Figure 172.

118. The interpretation based on the constructed zones of the dam is
presented in Figure 173. This figure shows five velocity zones for the core
materials and range in velocity between 1,700 and 4,500 fps. Zone 1 is
interpreted to consist of two velocity zones of 1,375 and 2,400 fps. The
dredge tailings have velocities which range in velocity between 1,575 and
5,300 fps. The 6,050-fps layer shown in the figure is believed to correspond
to weathered bedrock. Bedrock was interpreted as having a velocity of
11,525 fps. A zonal velocity interpretation, based on the P-wave composite

along the toe of the dam (Figure 152), was constructed as shown in Figure 174.

S-Wave Velocities

119. An S-wave zonal velocity composite for Mormon Island Auxiliary Dam
was constructed and is presented in Figure 175. The composite is based on an
analysis of the S-wave composite (Figure 153). Eight velocity zones were
determined for the core and the foundation. The velocities for the core range
between 950 and 1,350 fps and consist of seven zones. In general, the
velocities increase as a function of depth with the gxception of the 1,125-fps
layer that is sandwiched between two 1,275-fps layers. The bedrock under the
core had a velocity of 3,450 fps. The combination of crosshole and downhole
tests run on the downstream shoulder of the dam indicates that three velocity

zones exist. The 925-fps zone, which extends to a depth of approximately
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12 ft, corresponds to Zone 1 materials; whereas, the 1,075- and 1,250-fps
zones correspond to the core materials. The combination of crosshole and
downhole tests run on the downstream slope of the dam indicates that four
velocity zones exist. The 825 and 1,200 fps were assigned to Zone 1, 625 fps
to the dredge tailings and 2,900 fps to the bedrock foundation. The velocity
zones obtained at the toe of the dam were the result of analyzing vibratory,
downhole, and crosshole data. This analysis showed four velocity zones for
the dredge tailings and bedrock materials. The zones with velocities of 525
and 900 fps correspond to the dredge tailings. The zone with a velocity of
2,350 fps is believed to correspond to weathered bedrock; whereas, the zone
with 2,900 fps velocity corresponds to slightly weathered bedrock.

120. Figure 176 presents the zonal S-wave velocity interpretation based
on constructed zones of the dam. Figure 176 indicates seven velocity zones
ranging between 950 and 1,350 fps for the core. Zone 1 was divided into two
velocity zones of 875 and 1,200 fps as shown in the figure. The dredge
materials were divided into two zones with values of 575 and 900 fps. The
weathered bedrock encountered beneath the toe of the dam was assigned a value
of 2,350 fps. The bedrock was calculated to have a velocity of 3,075 fps. A
zonal velocity interpretation, based on the S-wave composite along the toe of

the dam (Figure 154), was constructed and is presented in Figure 177.
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PART IV: SUMMARY

121. This report documents the results of an in situ seismic
investigation conducted at Folsom Dam and Reservoir Project, located on the
American River, approximately 23 miles northeast of Sacramento, California.
Investigations were conducted at Dike 5, the Right and Left Wing Dam, and at
Mormon Island Auxiliary Dam. The investigation was performed to determine
true P- and S-wave velocity zonations of the embankments and their foundation
for use in a dynamic analysis.

122. P-wave velocities were determined from seismic refraction,
downhole, and crosshole testing. S-wave velocities were determined from
surface vibratory, downhole, and crosshole testing. Tests were conducted on
the crest, downstream slope, and downstream toe of Dike 5, the Right and Left
Wing Dam, and Mormon Island Auxiliary Dam. P- and S-wave velocities were
measured in the core, shells, and foundation of the embankments.

123, P- and S-wave velocity profiles were constructed for the following

areas:
a. Cross section through Station 180+50, Dike 5.
b. Cross section through Station 235+00, Right Wing Dam.
€. Cross section through Station 269450, Right Wing Dam.
d. Cross section through Station 303490, Left Wing Dam.
e. Cross section through Station 448+00, Mormon Island Auxiliary
Dam.
f. Cross section along the downstream toe of Mormon Island

Auxiliary Dam.
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- Figure 28. R-wave velocity versus depth for lines V-3 and V-4,
crest of Right Wing Dam, approximate Station 235400
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Figure 29. R-wave velocity versus depth for lines V-1 and V-2,

crest of Right Wing Dam, approximate Station 269+50
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Figure 30. R-wave velocity versus depth for lines V-23 and V-24,
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Figure 31. R-wave velocity versus depth for lines V-19 and V-20,
toe of Right Wing Dam, approximate Station 253450
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toe of Right Wing Dam, approximate Station 273+00
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Figure 34. Crosshole P-wave results, downstream shoulder,
Right Wing Dam, Station 235+00
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Figure 38. Crosshole S-wave results, downstream shoulder,
Right Wing Dam, Station 235400
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Figure 41. Crosshole P-wave results, centerline Right Wing Dam,
Station 269+50
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Figure 42.
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Crosshole P-wave results, downstream shoulder,
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Right Wing Dam, Station 269+50
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Figure 70. R-wave velocity versus depth for lines V-25 and V-26,
centered on Station 303490 crest of Left Wing Dam
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Figure 100. R-wave velocity versus depth for lines V-9 and V-10,
crest, approximate Station 450+00
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Figure 101. R-wave velocity versus depth for lines V-13 and V-14,
toe of right abutment, approximate Station 459+50
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Figure 102. R-wave velocity versus depth for lines V-15 and V-16,
toe, approximate Station 448+50
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Figure 103. R-wave velocity versus depth for lines V-11 and V-12,
toe, approximate Station 425+80
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Figure 107. Crosshole P-wave results, SCB-9,5,6,7,8, toe
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Figure 109. Crosshole P-wave results, MID-1,2, toe
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Figure 112. Crosshole S-wave results, centerline
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Figure 113. Crosshole S-wave results, downstream shoulder
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Figure 114. Crosshole §-wave results, downstream slope
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Figure 115. Crosshole S-wave results, SCB-9,5,6,7,8, toe
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Figure 116. Crosshole S-wave results, SCB-2,3,4, toe
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